Building Social Media Data Pipelines: Architecture Guide
Collecting social media data is step one. Building a reliable pipeline to process, store, and analyze that data is where the real value comes from.
This guide covers architecture patterns for social media data pipelines. Need a reliable data source? Our social media scraper provides the extraction layer for your pipeline.
Pipeline Architecture Overview
┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ Source │────▶│ Ingest │────▶│ Transform │────▶│ Store │
│ (API/Scrape)│ │ (Queue) │ │ (ETL) │ │ (Database) │
└─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘
│
▼
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ Alert │◀────│ Analyze │◀────│ Serve │
│ System │ │ (ML/BI) │ │ (API) │
└─────────────┘ └─────────────┘ └─────────────┘
Component Deep Dive
1. Data Ingestion
Simple: Direct API Calls
// Simple ingestion with SociaVault
async function ingestProfiles(usernames) {
const results = [];
for (const username of usernames) {
const profile = await sociavault.instagram.profile({ username });
results.push({
...profile,
collected_at: new Date().toISOString()
});
// Rate limiting
await sleep(200);
}
return results;
}
Scalable: Message Queue
// Producer: Queue collection jobs
const { Queue } = require('bullmq');
const collectionQueue = new Queue('social-collection', {
connection: { host: 'localhost', port: 6379 }
});
async function queueCollectionJobs(usernames, platform) {
const jobs = usernames.map(username => ({
name: 'collect-profile',
data: { username, platform },
opts: {
attempts: 3,
backoff: { type: 'exponential', delay: 1000 }
}
}));
await collectionQueue.addBulk(jobs);
}
// Consumer: Process jobs
const { Worker } = require('bullmq');
const worker = new Worker('social-collection', async (job) => {
const { username, platform } = job.data;
const profile = await sociavault[platform].profile({ username });
// Store in database
await db.profiles.upsert({
where: { platform_username: { platform, username } },
update: profile,
create: { platform, username, ...profile }
});
return profile;
}, {
connection: { host: 'localhost', port: 6379 },
concurrency: 10
});
2. Data Transformation
Cleaning and Normalization
function normalizeProfile(rawProfile, platform) {
// Different platforms have different field names
const normalizers = {
instagram: (p) => ({
platform: 'instagram',
username: p.username,
displayName: p.full_name,
bio: p.biography,
followers: p.follower_count,
following: p.following_count,
postsCount: p.media_count,
isVerified: p.is_verified,
profileUrl: `https://instagram.com/${p.username}`,
profilePicture: p.profile_pic_url
}),
tiktok: (p) => ({
platform: 'tiktok',
username: p.uniqueId,
displayName: p.nickname,
bio: p.signature,
followers: p.followerCount,
following: p.followingCount,
postsCount: p.videoCount,
isVerified: p.verified,
profileUrl: `https://tiktok.com/@${p.uniqueId}`,
profilePicture: p.avatarLarger
}),
twitter: (p) => ({
platform: 'twitter',
username: p.screen_name,
displayName: p.name,
bio: p.description,
followers: p.followers_count,
following: p.friends_count,
postsCount: p.statuses_count,
isVerified: p.verified,
profileUrl: `https://twitter.com/${p.screen_name}`,
profilePicture: p.profile_image_url_https
})
};
const normalizer = normalizers[platform];
if (!normalizer) {
throw new Error(`Unknown platform: ${platform}`);
}
return normalizer(rawProfile);
}
Enrichment
async function enrichProfile(normalizedProfile) {
return {
...normalizedProfile,
// Calculate engagement rate
engagementRate: await calculateEngagementRate(normalizedProfile),
// Detect category/niche
category: await detectCategory(normalizedProfile.bio),
// Sentiment of recent posts
contentSentiment: await analyzeRecentContent(normalizedProfile),
// Growth metrics (if historical data exists)
growth: await calculateGrowth(normalizedProfile),
// Data quality score
dataQuality: assessDataQuality(normalizedProfile),
// Enrichment timestamp
enrichedAt: new Date().toISOString()
};
}
async function calculateEngagementRate(profile) {
if (!profile.followers || profile.followers === 0) return 0;
const posts = await getRecentPosts(profile.platform, profile.username, 12);
if (posts.length === 0) return 0;
const avgEngagement = posts.reduce((sum, post) =>
sum + post.likes + post.comments, 0
) / posts.length;
return (avgEngagement / profile.followers) * 100;
}
3. Data Storage
Schema Design
-- Profiles table (normalized across platforms)
CREATE TABLE profiles (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
platform VARCHAR(50) NOT NULL,
username VARCHAR(255) NOT NULL,
display_name VARCHAR(255),
bio TEXT,
followers INTEGER,
following INTEGER,
posts_count INTEGER,
is_verified BOOLEAN DEFAULT false,
profile_url TEXT,
profile_picture TEXT,
category VARCHAR(100),
engagement_rate DECIMAL(5,2),
created_at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW(),
UNIQUE(platform, username)
);
-- Historical metrics for tracking changes
CREATE TABLE profile_metrics_history (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
profile_id UUID REFERENCES profiles(id),
followers INTEGER,
following INTEGER,
posts_count INTEGER,
engagement_rate DECIMAL(5,2),
recorded_at TIMESTAMP DEFAULT NOW()
);
-- Posts table
CREATE TABLE posts (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
profile_id UUID REFERENCES profiles(id),
platform_post_id VARCHAR(255),
content TEXT,
likes INTEGER,
comments INTEGER,
shares INTEGER,
views INTEGER,
post_type VARCHAR(50),
posted_at TIMESTAMP,
collected_at TIMESTAMP DEFAULT NOW(),
UNIQUE(profile_id, platform_post_id)
);
-- Indexes for common queries
CREATE INDEX idx_profiles_platform ON profiles(platform);
CREATE INDEX idx_profiles_category ON profiles(category);
CREATE INDEX idx_profiles_followers ON profiles(followers DESC);
CREATE INDEX idx_posts_profile ON posts(profile_id);
CREATE INDEX idx_posts_posted_at ON posts(posted_at DESC);
Time-Series Optimization
-- Use TimescaleDB for time-series data
CREATE EXTENSION IF NOT EXISTS timescaledb;
-- Convert metrics history to hypertable
SELECT create_hypertable(
'profile_metrics_history',
'recorded_at',
chunk_time_interval => INTERVAL '1 day'
);
-- Compression policy (compress data older than 7 days)
ALTER TABLE profile_metrics_history SET (
timescaledb.compress,
timescaledb.compress_orderby = 'recorded_at DESC'
);
SELECT add_compression_policy(
'profile_metrics_history',
INTERVAL '7 days'
);
-- Retention policy (keep only 1 year of history)
SELECT add_retention_policy(
'profile_metrics_history',
INTERVAL '1 year'
);
4. Scheduling and Orchestration
Cron-Based (Simple)
const cron = require('node-cron');
// Daily full refresh
cron.schedule('0 2 * * *', async () => {
console.log('Starting daily profile refresh...');
const profiles = await db.profiles.findAll();
for (const profile of profiles) {
await queueCollectionJobs([profile.username], profile.platform);
}
});
// Hourly high-priority refresh
cron.schedule('0 * * * *', async () => {
const highPriority = await db.profiles.findAll({
where: { priority: 'high' }
});
for (const profile of highPriority) {
await queueCollectionJobs([profile.username], profile.platform);
}
});
Workflow Orchestration (Apache Airflow)
from airflow import DAG
from airflow.operators.python import PythonOperator
from datetime import datetime, timedelta
default_args = {
'owner': 'data-team',
'depends_on_past': False,
'email_on_failure': True,
'retries': 3,
'retry_delay': timedelta(minutes=5)
}
dag = DAG(
'social_media_pipeline',
default_args=default_args,
schedule_interval='@daily',
start_date=datetime(2025, 1, 1),
catchup=False
)
collect_profiles = PythonOperator(
task_id='collect_profiles',
python_callable=collect_all_profiles,
dag=dag
)
collect_posts = PythonOperator(
task_id='collect_posts',
python_callable=collect_recent_posts,
dag=dag
)
transform_data = PythonOperator(
task_id='transform_data',
python_callable=run_transformations,
dag=dag
)
generate_reports = PythonOperator(
task_id='generate_reports',
python_callable=generate_daily_reports,
dag=dag
)
# Define dependencies
collect_profiles >> collect_posts >> transform_data >> generate_reports
5. Real-Time Processing
For real-time use cases (alerts, dashboards):
// Kafka consumer for real-time processing
const { Kafka } = require('kafkajs');
const kafka = new Kafka({
clientId: 'social-processor',
brokers: ['localhost:9092']
});
const consumer = kafka.consumer({ groupId: 'social-group' });
async function runConsumer() {
await consumer.connect();
await consumer.subscribe({ topic: 'social-data', fromBeginning: false });
await consumer.run({
eachMessage: async ({ topic, partition, message }) => {
const data = JSON.parse(message.value.toString());
// Process in real-time
await processRealTime(data);
// Check for alerts
await checkAlerts(data);
// Update real-time dashboard
await updateDashboard(data);
}
});
}
async function checkAlerts(data) {
// Viral content alert
if (data.type === 'post' && data.likes > 10000) {
await sendAlert('viral-content', data);
}
// Sentiment alert
if (data.sentiment < -0.5) {
await sendAlert('negative-sentiment', data);
}
// Follower spike
if (data.type === 'profile') {
const previous = await getPreviousMetrics(data.username);
if (previous && data.followers > previous.followers * 1.1) {
await sendAlert('follower-spike', data);
}
}
}
Complete Pipeline Example
Here's a production-ready pipeline using SociaVault:
// pipeline.js
const { Queue, Worker } = require('bullmq');
const { PrismaClient } = require('@prisma/client');
const cron = require('node-cron');
const prisma = new PrismaClient();
const SOCIAVAULT_API_KEY = process.env.SOCIAVAULT_API_KEY;
// ============ COLLECTION ============
async function collectProfile(platform, username) {
const response = await fetch(
`https://api.sociavault.com/${platform}/profile`,
{
method: 'POST',
headers: {
'Authorization': `Bearer ${SOCIAVAULT_API_KEY}`,
'Content-Type': 'application/json'
},
body: JSON.stringify({ username })
}
);
return response.json();
}
// ============ TRANSFORMATION ============
function transformProfile(raw, platform) {
return {
platform,
username: raw.username,
displayName: raw.full_name || raw.nickname || raw.name,
bio: raw.biography || raw.signature || raw.description,
followers: raw.follower_count || raw.followerCount,
following: raw.following_count || raw.followingCount,
postsCount: raw.media_count || raw.videoCount,
engagementRate: calculateEngagement(raw),
collectedAt: new Date()
};
}
function calculateEngagement(profile) {
// Simplified - in production, fetch posts
const followers = profile.follower_count || profile.followerCount || 0;
if (followers === 0) return 0;
return Math.min(10, Math.random() * 5); // Placeholder
}
// ============ STORAGE ============
async function storeProfile(data) {
// Upsert profile
const profile = await prisma.profile.upsert({
where: {
platform_username: {
platform: data.platform,
username: data.username
}
},
update: {
displayName: data.displayName,
bio: data.bio,
followers: data.followers,
following: data.following,
postsCount: data.postsCount,
engagementRate: data.engagementRate,
updatedAt: new Date()
},
create: data
});
// Store historical metrics
await prisma.metricsHistory.create({
data: {
profileId: profile.id,
followers: data.followers,
following: data.following,
postsCount: data.postsCount,
engagementRate: data.engagementRate
}
});
return profile;
}
// ============ WORKER ============
const collectionQueue = new Queue('collection');
const worker = new Worker('collection', async (job) => {
const { platform, username } = job.data;
// Collect
const raw = await collectProfile(platform, username);
if (raw.error) {
throw new Error(raw.error);
}
// Transform
const transformed = transformProfile(raw, platform);
// Store
const stored = await storeProfile(transformed);
console.log(`Processed: ${platform}/${username}`);
return stored;
}, {
concurrency: 5,
limiter: {
max: 10,
duration: 1000 // 10 requests per second
}
});
// ============ SCHEDULER ============
// Daily refresh of all profiles
cron.schedule('0 3 * * *', async () => {
const profiles = await prisma.profile.findMany();
const jobs = profiles.map(p => ({
name: 'collect',
data: { platform: p.platform, username: p.username }
}));
await collectionQueue.addBulk(jobs);
console.log(`Queued ${jobs.length} collection jobs`);
});
// ============ API ============
const express = require('express');
const app = express();
app.get('/api/profiles', async (req, res) => {
const { platform, category, minFollowers } = req.query;
const profiles = await prisma.profile.findMany({
where: {
...(platform && { platform }),
...(category && { category }),
...(minFollowers && { followers: { gte: parseInt(minFollowers) } })
},
orderBy: { followers: 'desc' },
take: 100
});
res.json(profiles);
});
app.get('/api/profiles/:id/history', async (req, res) => {
const history = await prisma.metricsHistory.findMany({
where: { profileId: req.params.id },
orderBy: { recordedAt: 'desc' },
take: 30
});
res.json(history);
});
app.listen(3000, () => console.log('Pipeline API running on :3000'));
Infrastructure Recommendations
Small Scale (< 10K profiles)
- Database: PostgreSQL
- Queue: Redis + BullMQ
- Hosting: Single VPS (4GB RAM)
- Cost: ~$50/month
Medium Scale (10K-100K profiles)
- Database: PostgreSQL with read replicas
- Queue: Redis cluster
- Hosting: 2-3 VPS or managed services
- Cost: ~$200-500/month
Large Scale (100K+ profiles)
- Database: PostgreSQL + TimescaleDB (or ClickHouse)
- Queue: Kafka
- Orchestration: Airflow or Prefect
- Hosting: Kubernetes cluster
- Cost: ~$1,000-5,000/month
Get Started
- Sign up for SociaVault - 50 free credits
- Choose your stack - Start simple, scale as needed
- Build incrementally - Collection → Storage → Transformation → Analysis
- Monitor everything - Log errors, track metrics, alert on failures
Need help architecting? We've helped companies process millions of social profiles. Contact us for a consultation.
Found this helpful?
Share it with others who might benefit
Ready to Try SociaVault?
Start extracting social media data with our powerful API. No credit card required.